No. 214: Inference for Batched Adaptive Experiments

Year: 2025
Type: Working Paper

Abstract

The advantages of adaptive experiments have led to their rapid adoption in economics, other fields, as well as among practitioners. However, adaptive experiments pose challenges for causal inference. This note suggests a BOLS (batched ordinary least squares) test statistic for inference of treatment effects in adaptive experiments. The statistic provides a precisionequalizing aggregation of per-period treatment-control differences under heteroskedasticity. The combined test statistic is a normalized average of heteroskedastic per-period z-statistics and can be used to construct asymptotically valid confidence intervals. We provide simulation results comparing rejection rates in the typical case with few treatment periods and few (or many) observations per batch.

 

Participating Institutions

TRR 266‘s main locations are Paderborn University (Coordinating University), HU Berlin, and University of Mannheim. All three locations have been centers for accounting and tax research for many years. They are joined by researchers from LMU Munich, Frankfurt School of Finance and Management, Goethe University Frankfurt, University of Cologne, Leibniz University Hannover and TU Darmstadt who share the same research agenda.

WordPress Cookie Plugin by Real Cookie Banner