No. 214: Inference for Batched Adaptive Experiments

Jahr: 2025
Typ: Working Paper

Abstract

The advantages of adaptive experiments have led to their rapid adoption in economics, other fields, as well as among practitioners. However, adaptive experiments pose challenges for causal inference. This note suggests a BOLS (batched ordinary least squares) test statistic for inference of treatment effects in adaptive experiments. The statistic provides a precisionequalizing aggregation of per-period treatment-control differences under heteroskedasticity. The combined test statistic is a normalized average of heteroskedastic per-period z-statistics and can be used to construct asymptotically valid confidence intervals. We provide simulation results comparing rejection rates in the typical case with few treatment periods and few (or many) observations per batch.

 

Beteiligte Institutionen

Die Hauptstandorte vom TRR 266 sind die Universität Paderborn (Sprecherhochschule), die HU Berlin und die Universität Mannheim. Alle drei Standorte sind seit vielen Jahren Zentren für Rechnungswesen- und Steuerforschung. Hinzu kommen Wissenschaftler der LMU München, der Frankfurt School of Finance and Management, der Goethe-Universität Frankfurt, der Universität zu Köln, der Leibniz Universität Hannover und der TU Darmstadt, die die gleiche Forschungsagenda verfolgen.

WordPress Cookie Plugin von Real Cookie Banner